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ABSTRACT
Objective  To highlight the general features of IQOS 
literature focusing on the chemical analysis of IQOS 
emissions.
Data sources  PubMed, Web of Science and Scopus 
databases were searched on 8 November 2021 using 
the terms ’heated tobacco product’, ’heat-not-burn’, 
’IQOS’ and ’tobacco heating system’ with time restriction 
(2010–2021). The search yielded 5480 records.
Study selection  Relevant publications on topics 
related to IQOS assessment were retrieved (n=341). Two 
reviewers worked separately and reached agreement by 
consensus.
Data extraction  Data on author affiliation and 
funding, article type and date of publication were 
extracted. Publications were categorised depending on 
their focus and outcomes. Data on IQOS emissions from 
the chemical analysis category were extracted.
Data synthesis  Of the included publications, 25% 
were published by Philip Morris International (PMI) 
affiliates or PMI-funded studies. PMI-sponsored 
publications on emissions, toxicology assessments 
and health effects were comparable in number to 
those reported by independent research, in contrast to 
publications on IQOS use, market trends and regulation. 
Data on nicotine yield, carbonyl emissions, other 
mainstream emissions, secondhand emissions and IQOS 
waste were compared between data sources to highlight 
agreement or disagreement between PMI-sponsored and 
independent research.
Conclusions  Our analysis showed agreement between 
the data sources on nicotine yield from IQOS under the 
same puffing conditions. Also, both sources agreed that 
IQOS emits significantly reduced levels of some emissions 
compared with combustible cigarettes. However, 
independent studies and examination of PMI’s data 
showed significant increases in other emissions from and 
beyond the Food and Drug Administration’s harmful and 
potentially harmful constituents list.

INTRODUCTION
Tobacco use is the leading cause of preventable 
disease and death worldwide.1 The WHO states 
that the tobacco epidemic kills more than 8 million 
people annually.2 In the USA, the 1964 Surgeon 
General Report linked smoking cigarettes to delete-
rious health effects, such as lung cancer.3 This land-
mark in the history of tobacco research and policy 
transpired, although slowly, into more research and 
regulations on tobacco in the following decades.4 

On the other hand, it also triggered faster adapta-
tion from the industry, which introduced filtered, 
low-tar, light, ultralight and mentholated cigarettes 
as supposedly safer alternatives5 that were not, in 
fact, safer than their predecessors.6–8

More recently, the tobacco industry has 
promoted alternative products, like electronic ciga-
rettes and heated tobacco products (HTPs), with 
a claimed potential of reduced risk and harm.9–11 
Analogous with other industries,12 13 tobacco 
companies promote ‘safer’ products as a narra-
tive directed towards health-conscious consumers 
and policymakers.14 A remarkable example was 
the introduction of IQOS, an HTP branded by 
tobacco giant Philip Morris International (PMI), 
into the US market after securing a premarket 
tobacco application from the US Food and Drug 
Administration (FDA).15 16 A year later, the FDA 
authorised the advertisement of IQOS as a modi-
fied risk tobacco product (MRTP),17 18 with ‘modi-
fied exposure’ but not ‘modified risk’ claims.18 The 
MRTP application relies on a theoretical benefit of 
tobacco harm reduction based on data presented 
by the industry.19–21 However, researchers affiliated 
with or supported by the industry have communi-
cated risks in a way that minimises harm,22 created 
a false impression of unbiased research,23 high-
lighted favourable results24 and ignored unfavour-
able ones,25 26 concealed industry support27 28 or 
published in industry-dominated journals.29 These 
tactics jeopardise research integrity,30–33 and scep-
ticism is warranted when dealing with industry-
sponsored data.14 34 Moreover, recently publicised 
industry documents indicated that industry research 
was several years ahead of independent research.34 
These observations highlight the need to scrutinise 
industry data and emphasise the importance of 
independent research to verify emissions, health 
effects and public health impact of newly intro-
duced tobacco products.35–37

In this paper, we report a systematic literature 
review conducted to assess the distribution of 
published data on IQOS between PMI-sponsored 
research (affiliated authors or funded studies) and 
independent research. We focused on publica-
tion type, topic(s) and date. We extracted data on 
chemical analysis of IQOS mainstream emissions 
including nicotine, carbonyls and other harmful 
and potentially harmful constituents (HPHCs). We 
also discussed data on the impact of IQOS use on 
indoor air quality and the environmental impact of 
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IQOS waste disposal. This work emphasises the importance of 
independent evidence in tobacco control.

METHODS
Literature search strategy and study selection
PubMed, Web of Science and Scopus databases were searched on 
8 November 2021 using the keywords ‘heated tobacco product’, 
‘Heat-not-burn’, ‘IQOS’ and ‘Tobacco Heating System’ (THS). 
The search was limited to publication between 2010 and 2021 to 
avoid collecting data on an HTP previously marketed by PMI, a 
precursor to IQOS.17 Two reviewers (AE-H and ME-K) worked 
separately to screen the databases. EndNote V.X9 was used to 
record all hits and remove duplicates. Once the two reviewers 
removed duplicates and independently screened the titles 
and abstracts of included publications, they met and reached 
consensus. The same agreement was reached after a full-text 
review and data were collected in a common Excel file.

Inclusion criteria
The systematic review included peer-reviewed publications in 
English on any topic related to IQOS or THS (a premarket desig-
nation with a model code: 2.1, 2.2 or 2.4).

Exclusion criteria
A publication was excluded if it is not peer reviewed, not related 
to HTPs, talks about HTP in general without mentioning IQOS 
(or THS 2.1, 2.2 or 2.4) or focuses on HTPs other than IQOS 
(eg, Glo, Ploom) without testing IQOS for comparison.

Data extraction
Data on author affiliation, conflict of interest and/or study 
funding were retrieved from the respective sections of each 
publication. The type and date of publication were recorded. 
Publications were categorised into six categories based on topic 
or focus. The chemical analysis category includes assessments of 
IQOS mainstream emissions, sidestream emissions, particle size 
distribution, impact of IQOS use on indoor air quality and envi-
ronmental impact of IQOS waste. The toxicity assessment cate-
gory includes in vitro, in vivo and systems toxicology studies.38 
The human health category includes clinical studies that assessed 
the pharmacokinetics of nicotine, biomarkers of exposure and 
biomarkers of potential harm following IQOS use. The category 
related to perception, awareness and prevalence includes studies 
related to IQOS use trends and population appeal. One category 
related to marketing strategies and trends and another related to 
the regulation of IQOS were also included. Categorisation deci-
sion on publications that could be classified into two or more 
categories was reached by consensus.

Data synthesis
Data on authors’ relation to PMI, publication type and date of 
publication were used to discuss the general features of IQOS 
literature. Research was classified as PMI sponsored if the 
authors were PMI affiliated or the study was funded by PMI. 
Spearman’s rank-order correlation was run to assess the strength 
and direction of association between the annual number of publi-
cations and data source. Chi-sqaure (Χ2) analysis was performed 
to test for differences in publication type between data sources. 
For chemical analysis, data on mainstream nicotine and carbonyl 
emissions were compared across studies and statistical analyses 
were performed to highlight the impact of puffing parameters 
on emissions. The association between outcome measures with 
product flavour, data source, puffing duration (seconds), number 

of puffs and flow rate (L/min) was analysed using a general linear 
model regression analysis. Because the IQOS battery lifetime is 
limited, we calculated the number of puffs based on puff duration 
and interpuff interval, and the flow rate from the puff volume 
and total puffing duration. Statistical analyses were performed 
using SPSS V.25.0 (significance at p<0.05). A narrative synthesis 
summarises data on other toxicants in mainstream emissions, 
sidestream emissions and other topics covered in the chemical 
analysis category. The content of publications listed in the other 
five categories will be discussed in follow-up reports.

RESULTS
Included studies
The search resulted in 5480 hits (online supplemental table 
S1), and 12 publications were manually retrieved (figure  1). 
Duplicate checking removed 341 hits, while title and abstract 
screening removed 4571 hits. After a thorough review of the full 
texts of the remaining records (n=580), 341 publications were 
deemed relevant (online supplemental table S2). Of the included 
publications, 86 were published by researchers affiliated with 
or supported by PMI (25%), 246 by independent researchers 
(72%) and 9 by competing manufacturers (3%).

General features of IQOS literature
Categorisation of included publications
We categorised the literature into six categories (figure 2). Inde-
pendent and PMI-sponsored research reported close contri-
butions in chemical analysis (56% and 43%, respectively) and 
toxicity assessment (38% and 57%, respectively). Two-thirds of 
publications in the human health category were published by 
independent research. PMI-sponsored research constitutes 3% 
of the three categories related to use, marketing and regulation, 
which constitute 44% of the published literature on IQOS. In 
the context of comparing IQOS to their HTPs, competing manu-
facturers reported on chemical analysis (1%), toxicity assessment 
(5%), human health (3%) and perception and use of IQOS (3%).

Figure 1  Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) diagram of the systematic review. Reasons 
for exclusion of a publication: not peer reviewed, not related to heated 
tobacco products (HTPs), discusses HTP in general or focuses on HTPs 
other than IQOS (eg, Glo, Ploom) without testing IQOS for comparison.
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Date of publication
Figure 3 illustrates the temporal distribution of IQOS literature. 
The number of independent research publications on IQOS 
surpassed PMI-sponsored publications beginning in 2018.39 40 
From 2016 to 2021, PMI published a steady number of annual 
reports (14.2±3.9); however, for the same period, the number 
of independent annual publications varies widely (4 in 2016 to 
74 in 2020). From 2018 to 2021, other HTP manufacturers 
reported data on IQOS for comparison.

Publication type
The assessment of publication type showed more indepen-
dent (66%) than PMI-sponsored original investigations. PMI-
sponsored research reported no brief reports, one literature 
review and five publications characterised as letters, commen-
taries, protocols, opinions and industry watch type (table  1). 
Brief reports, reviews and opinion letters constituted 25% of 
the IQOS literature. Independent researchers published seven 
literature reviews on IQOS in 2019 and six in 2020. Several 

independent opinion letters were published annually in the last 
5 years (8.2±3.1). Manufacturers of other HTPs published eight 
original articles (3%) and one review (6%) that included IQOS 
data.

Chemical analysis
In this section, IQOS emissions will be compared with those 
from combustible cigarettes generated under the Health Canada 
Intense (HCI) puffing regime conditions. Any other puffing 
conditions used in the comparison will be clearly stated.

Nicotine yield in IQOS aerosols
PMI data
Five PMI studies showed that nicotine yield from IQOS with 
tobacco flavour (hereafter IQOS regular (IQOS-R)) varies 
widely under different puffing regimes (range: 0.49–2.19 mg/
stick).9 41–44 PMI data showed that nicotine yield from IQOS-R 
(1.27±0.10 mg/stick) was 64% of the average yield of 3R4F 
reference cigarette smoke (1.97±0.17 mg/cigarette).9 44 Nicotine 
yield of IQOS menthol flavour (IQOS-M; 1.21 mg/stick) was 
reported in one study to be similar to IQOS-R (online supple-
mental table S3).41

Independent data
Fifteen studies reported nicotine yield from IQOS-R under 
different puffing regimes (range: 0.30–1.46 mg/stick).36 45–58 
The collected data showed that the average nicotine yield 
from IQOS-R (1.19±0.20 mg/stick) was equal to 65% that of 
3R4F.51 55 58 Six studies reported on nicotine yield of IQOS-M 
(1.09±0.25 mg/stick).45 46 51 52 54 58 Eleven studies used cigarette 
comparators other than 3R4F, with two studies showing that 
IQOS-R nicotine yield is equivalent to that of 1R5F reference 
cigarette (1.1 mg/cigarette).36 45 47–54 56 Two independent studies 
found nicotine mainly in salt form in IQOS-R aerosols.47 56 
Table 2 shows the wide range of nicotine yields from IQOS-R 
generated under different puffing parameters as reported by all 
data sources (0.30–2.19 mg/stick).59

Levels of carbonyls in IQOS aerosols
PMI data
Three PMI studies quantified carbonyls in IQOS-R emissions 
under different puffing regimes.9 41 42 For eight carbonyls (form-
aldehyde, acetaldehyde, acetone, acrolein, propionaldehyde, 
crotonaldehyde, methyl ethyl ketone and butyraldehyde), the 
data showed a significant reduction (70%–95%) in IQOS-R 
aerosols compared with 3R4F cigarette smoke.9 41 42 Three 
studies highlighted the robustness of HPHC reductions 
(including carbonyls) in IQOS aerosols compared with 3R4F 
under different puffing regimes and climatic conditions.59–61 A 
comprehensive chemical characterisation using non-targeted 

Figure 2  Categorisation of publications on IQOS according to 
the main topic covered. This includes publications by Philip Morris 
International (PMI)-affiliated or sponsored researchers, independent 
researchers and researchers affiliated with or supported by competing 
manufacturers of heated tobacco products (HTPs).

Figure 3  The temporal distribution of publications on IQOS starts 
from its introduction into the global market in 2014 and extends to 
2021. PMI, Philip Morris International.

Table 1  Type of publication per data source; number of publications 
(% of total from each source type)

Type of paper PMI Independent Competing manufacturers

Original research 80 (93) 168 (68) 8 (89)

Brief report 0 (0) 23 (9) 0 (0)

Review 1 (1) 14 (6) 1 (11)

LCPOI 5 (6) 41 (17) 0 (0)

Number of publications (% of total from each source type).
LCPOI, letters, commentaries, protocols, opinions and industry watch; PMI, Philip 
Morris International.
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analysis and semiquantification reported similar reductions 
in the above-mentioned carbonyls.62 However, the same data 
showed a lower reduction in 5-hydroxymethylfurfural (28%) 
and 2,3-pentanedione (62%) and increases in hydroxyace-
tone (226%), furfural (125%), 5-methylfurfural (270%) and 
2(5H)-furanone (332%) levels in IQOS-R aerosols compared 
with 3R4F cigarette smoke.

Independent data
Nine independent studies reported on carbonyl emissions from 
IQOS-R under different puffing regimes.36 46 47 49 52–55 57 Data 
showed significant reduction in carbonyl levels compared with 
3R4F smoke (69%–97%) except for one study that showed a 
moderate decrease for some carbonyls (formaldehyde (26%), 
methylglyoxal (40%) and methacrolein (52%)) and increases for 
others (benzaldehyde (11%) and hexaldehyde (155%)).57 Two 
studies reported a slightly lower reduction in carbonyl emissions 

when IQOS-R and 3R4F were smoked under International Orga-
nization for Standardization (ISO) conditions (eg, butyraldehyde 
was reduced by 75% and 42% under HCI and ISO conditions, 
respectively).54 55 One study reported similar reductions when 
IQOS was compared with CORESTA Monitor 6 reference 
cigarette which is reported to have similar toxicant emissions 
as 3R4F.54 63 However, this study showed that IQOS-R emis-
sions were slightly lower than 1R5F reference cigarette smoke 
for formaldehyde (33%) and acetaldehyde (6%) but higher 
for butyraldehyde (72%), isovaleraldehyde (91%) and glyoxal 
(64%) under ISO conditions.54 Other studies used different ciga-
rette comparators like Marlboro Red, Lucky Strike Blue Lights 
and ultralight cigarettes. Reduction of carbonyl levels in compar-
ison to Marlboro Red was similar to 3R4F but much lower 
when IQOS was compared with Lucky Strike Blue Lights (eg, 
formaldehyde (25%) and acrolein (18%)).36 47 Acetone, acrolein 
and methyl ethyl ketone were reduced by 50% in comparison 

Table 2  Nicotine yield (mean±SD) in IQOS-R aerosols under different puffing regimes

Reference Affiliation/funding Puffing regime (PR) Puff duration (s) Interpuff interval (s) Puff volume (mL) Nicotine yield (mg/stick)

Schaller et al41 PMI HCI 2.0 30 55 1.32±0.16

ISO 2.0 60 35 0.49±0.08

PR1 2.4 25 60 1.64±0.22

PR2 2.4 25 80 1.8±0.41

PR3 4.5 22 110 2.19±0.43

PR4 2.4 30 40 0.76±0.19

PR5 2.4 30 80 1.13±0.11

Schaller et al42 PMI HCI 2.0 30 55 1.38±0.20

Jaccard et al9 PMI HCI 2.0 30 55 1.14±0.03

Poget et al43 PMI HCI 2.0 30 55 1.36±0.09

ISO 2.0 60 35 0.49±0.04

PR1 2.4 25 60 1.64±0.10

PR2 2.4 25 80 1.8±0.19

PR3 4.5 22 110 2.19±0.20

PR4 2.4 30 40 0.76±0.09

PR5 2.4 30 80 1.13±0.05

Ibañez et al44 PMI HCI 2.0 30 55 1.15±0.02

Gasparyan et al110 BAT HCI 2.0 30 55 1.23±0.05

Auer et al36 Ind ISO 2.0 60 35 0.30±0.21

Bekki et al51 Ind HCI 2.0 30 55 1.10

Farsalinos et al45 Ind HCI 2.0 30 55 1.40±0.16

PR6 4.0 30 55 1.41±0.08

Farsalinos et al52 Ind HCI 2.0 30 55 1.20

PR7 3.0 30 80 1.31

PR8 3.0 25 90 1.60

Leigh et al50 Ind HCI 2.0 30 55 1.40±0.20

Mallock et al53 Ind HCI 2.0 30 55 1.1±0.10

Uchiyama et al54 Ind HCI 2.0 30 55 1.2±0.13

ISO 2.0 60 35 0.40±0.07

Cancelada et al46 Ind HCI 2.0 30 55 0.99±0.10

Li et al55 Ind HCI 2.0 30 55 1.35±0.07

ISO 2.0 60 35 0.50±0.03

Meehan-Atrash et al56 Ind PR9 3.0 30 55 1.22±0.12

Salman et al47 Ind HCI 2.0 30 55 1.50±0.20

ISO 2.0 60 35 0.77±0.06

Bitzer et al48 Ind PR10 2.5 30 75 1.47±0.12

Wang et al49 Ind ISO 2.0 60 35 0.55±0.01

Dusautoir et al57 Ind HCI 2.0 30 55 0.76

Perezhogina et al58 Ind HCI 2.0 30 55 1.10±0.03

BAT, British American Tobacco; HCI, Health Canada Intense puffing regime; Ind, independent; IQOS-R, IQOS regular; ISO, International Organization for Standardization; PMI, Philip Morris 
International.
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with emissions from an ultralight cigarette; however, formal-
dehyde, acetaldehyde, propionaldehyde, crotonaldehyde and 
butyraldehyde were increased by 109%, 29%, 29%, 33% and 
160%, respectively.49 Moreover, a study reported higher furanic 
carbonyl emissions in IQOS-R aerosols in comparison to 3R4F 
smoke (furfural (13%) and 5-methylfurfural (175%)).64 Simi-
larly, another study reported higher acetol emissions in IQOS-R 
aerosols (188%); the acetol level was even higher with IQOS-M 
(288%).54

Other HPHCs, radicals and particles
PMI data
Three studies reported no solid particles emissions in IQOS 
aerosols in contrast to 3R4F smoke, indicating that no combus-
tion took place.65–67 Combustion was also ruled out by another 
study that showed a similar chemical composition of IQOS aero-
sols generated under oxidative and non-oxidative atmospheres 
(air and nitrogen, respectively).68

One study showed that the transfer of tobacco-specific nitro-
samines (TSNAs) from IQOS tobacco filler to the aerosol was 
two to three times lower than combustible cigarettes due to 
the lower operating temperature,69 resulting in more than 90% 
reduction in TSNA yields. PMI data also showed more than 90% 
reduction of aromatic amines, gases (like nitrogen oxides and 
hydrogen cyanide), TSNAs, phenols, polycyclic aromatic hydro-
carbons (PAHs) and metals, but lower reductions (60%–80%) in 
other HPHCs like ammonia, catechol, mercury, acetamide and 
acrylamide.9 41 42 A study showed the same reduction of HPHC 
yields including phenols, volatile organic compounds (VOCs) 
and TSNAs when comparing IQOS to 1R6F reference cigarette, 
which has similar toxicant emissions as 3R4F.70 The comprehen-
sive chemical characterisation mentioned previously reported 
data on 529 constituents including alcohols, carbonyls, acids, 
furans, terpenes, pyridines and other chemical classes, showing 
moderate to high reductions (6%–99%) yet sometimes high 
increases (13%–6330%) in IQOS-R emissions compared with 
3R4F.62 71

Independent data
One study reported presence of a non-volatile fraction of aerosol 
particles.72 Another study reported observation of charring on 
used IQOS HeatSticks (ie, HEETS) and detection of an IQOS-
specific toxicant (formaldehyde cyanohydrin).40 73

Two studies reported more than 90% reduction in PAH 
emissions in IQOS aerosols compared with 3R4F,57 except for 
acenaphthene which was higher by 196% in IQOS aerosols 
under ISO conditions.36 A study reported at least 80% reduc-
tion in IQOS emissions of carbonyls, VOCs, TSNAs, aromatic 
amines, phenol and Benzo[a]pyrene but not in N-nitrosoanab-
asine, ammonia gas or some carbonyls compared with 3R4F 
under HCI and ISO conditions.55 Unlike carbonyls, VOCs and 
TSNAs were lower and aromatic amines and PAHs were not 
present in IQOS aerosols compared with smoke from an ultra-
light cigarette under ISO conditions.49 Two studies reported 
more than 95% reduction in 1,3-butadiene, benzene and 
toluene in IQOS emissions compared with a range of cigarette 
smoke levels.53 58 A study showed 76%–84% lower pyridine 
emissions in IQOS-R aerosols compared with 3R4F smoke.64 
However, the same group reported lower reduction under ISO 
conditions (58%) and increases when IQOS-R was compared 
with 1R5F cigarette (264%).54 One study comparing emissions 
from JUUL (a leading e-cigarette brand) to IQOS and 3R4F 
showed 400% higher glycidol in IQOS aerosols than in 3R4F 

cigarette smoke generated under an intense puffing regime 
compared with HCI.74

TSNA emissions were reduced by 85%–95% in IQOS-R aero-
sols compared with 3R4F and a similar reduction compared 
with 1R5F smoke.51 75 In a per-puff comparison, TSNA levels 
were reported to be 8–22 times lower in IQOS-R aerosol than in 
Marlboro Red cigarette smoke.50

One study reported more than 99% and 95% reductions in 
gas phase radical and nitrogen oxide emissions, respectively, in 
IQOS aerosols compared with 3R4F smoke.76 Another group 
reported similar reductions in gas phase radicals, in addition to 
the absence of particle-phase radicals.48 One study showed that 
reactive oxygen species emissions are 91% and 82% lower in the 
gas phase and particle phase of IQOS aerosols compared with 
Marlboro Red cigarette smoke under ISO conditions.47

IQOS secondhand emissions
PMI data
Two studies on the impact of IQOS use on indoor air quality 
reported background concentrations of constituents including 
suspended particles (particulate matter, PM2.5), VOCs, carbo-
nyls, carbon monoxide and nitrogen oxide. Only acetaldehyde 
and nicotine concentrations were above background levels 
and much lower compared with those from Marlboro Gold 
cigarettes.77 78 Another study reported similar results, finding 
benzene, toluene and solanesol in addition to nicotine and 
acetaldehyde above background levels, but 77%–99% lower 
than Marlboro Gold.79 In contrast, a chamber study showed 
that IQOS use resulted in a statistically significant increase in 
particle number concentration (PNC), PM2.5, nicotine and 
acetaldehyde compared with background levels, but significantly 
lower (12%, 4%, 6% and 12%, respectively) than those from 
cigarette smoking.80 However, IQOS formaldehyde emissions 
were 51% those from combustible cigarettes. A study showed 
that IQOS use in a nightclub increased the background number 
and mass concentration of particles that exhibited high volatility 
but did not significantly affect the concentrations of formalde-
hyde, acetaldehyde and 3-ethenyl pyridine.81 A study on TSNAs 
(1′-demethyl-1′-nitrosonicotine (NNN) and 4-(methylnitrosami
no)-1-(3-pyridyl)-1-butanone (NNK)) in indoor air showed that 
NNN and NNK emissions in IQOS aerosols were 10% and 2% 
of those from Marlboro Gold.82

A comprehensive analysis of airborne constituents emitted 
from IQOS quantified 31 constituents and targeted screening 
of 30 compounds in the gas phase and 36 compounds in the 
particle phase.83 Data showed that only nicotine, glycerol, 
menthol and acetaldehyde levels were above background levels. 
Ultrafine particles increased on IQOS use but quickly returned 
to baseline. The reported data showed that indoor IQOS emis-
sions are substantially lower than combustible cigarettes or 
incense, consistent with a review on the impact of IQOS emis-
sions on indoor air quality compared with everyday activities.84 
This review highlighted the challenges of assessing secondhand 
exposure from IQOS in real-life scenarios.

Independent data
An independent study simulating secondhand exposure to submi-
cron particles (SMP) showed four times lower emissions from 
IQOS in comparison to cigarettes, but a return to background 
levels immediately after use termination, implying that IQOS use 
is not a persistent indoor air pollutant.85 In contrast, another 
study showed that although SMP emissions from IQOS are one 
order of magnitude lower than cigarette smoke, levels were still 
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higher than baseline values 1 hour after IQOS use.86 Two studies 
showed that IQOS emitted the least PNC of ultrafine, fine and 
coarse particles in an indoor environment compared with an 
e-cigarette and a combustible cigarette.87 88 The conclusion that 
IQOS is the least indoor air pollutant was confirmed by another 
study that nevertheless estimated concerning acrolein levels.46 
Moreover, a study showed significantly lower secondhand VOC 
and PM emissions from IQOS compared with combustible ciga-
rettes and e-cigarettes.89 A study indicated that IQOS has signifi-
cantly less intense and persistent impact on indoor air quality 
compared with combustible cigarettes, and significantly lower 
than a competing HTP from British American Tobacco (ie, Glo) 
and a leading e-cigarette (JUUL).90 This study found some differ-
ences in IQOS secondhand emissions depending on flavour. In 
contrast, another study showed that IQOS emitted comparable 
PM1 levels to Glo and higher than JUUL.91 In a chamber study, 
IQOS emitted significantly lower PM2.5 than a combustible ciga-
rette or Glo but equivalent to ploomTECH tobacco product.92

A study showed that IQOS emitted 0.7%, 1–2%, 22–24%, 5% 
and 7% of black carbon, PM2.5 and PM10, PMnm, acetalde-
hyde and formaldehyde levels, respective to those from cigarette 
smoking. PAHs were undetectable in IQOS secondhand emis-
sions and metal emissions from IQOS were much lower than 
from cigarettes but comparable to background levels. Never-
theless, the authors computed statistically significant emission 
factors of certain n-alkanes, organic acids and carcinogenic alde-
hydes that warrant restriction of indoor IQOS use.93

A study showed that IQOS use in passenger cars markedly 
increased the number concentration of ultrafine particles and 
nicotine levels.94

Environmental impact of IQOS waste
PMI data
A study discussed the impact of improper disposal of IQOS 
HeatSticks and combustible cigarettes on the environment with 
a comprehensive analysis of metal leachates from IQOS waste 
as water contaminants.95 Another study focused on the devel-
opment of a photolysis method to treat nicotine leachates in 
water.96

Independent data
No independent research addressed the impact of improper 
IQOS waste disposal on the environment.

DISCUSSION
Researchers affiliated with or funded by PMI reported a consider-
able share of IQOS literature (25%), exceeding the contribution 
of independent researchers in the first 4 years after the intro-
duction of IQOS into the global market.36 39 However, it should 
be noted that financial connections to PMI may be concealed 
in some publications.97 98 There was no significant Spearman 
correlation between research funding and the temporal distribu-
tion of the number of publications (rs=0.072, p=0.878).

PMI-sponsored researchers focused their efforts on chemical 
analysis and toxicity assessment, and studies related to health 
benefits for smokers switching to IQOS, generating data to 
support the IQOS MRTP application.11 18 The industry used 
exposure reduction as a feature to promote IQOS as a safer 
tobacco product than combustible cigarettes.99 100 On the other 
hand, independent research published 90 articles on perception, 
awareness, use and prevalence to highlight IQOS use trends and 
directions in the population.101–103 Tobacco control experts are 
concerned with the widespread use of IQOS and its impact on 

individual and public health,104 so they reported comprehen-
sively on IQOS emissions, toxicity assessment, health impact, 
and marketing and regulation.

Of interest was the number of brief reports, reviews and 
opinion pieces published mainly by independent researchers 
(25%), suggesting a high interest and concern regarding this 
novel tobacco product.105–109 A χ2 test of independence showed 
a significant relationship between publication type and data 
source (p<0.001).

Figure  4 summarises data on nicotine yield from IQOS-R 
smoked under HCI puffing regime with no statistical differ-
ence between independent and PMI data (p=0.36). Data from a 
competing manufacturer also reported a similar nicotine yield.110 
Regardless of the data source, the averaged ratio of nicotine yield 
from IQOS-R was ~65% of 3R4F reference cigarette, which is 
representative of the most popular cigarettes in the US market. 
However, IQOS-R nicotine yield was similar to a 1R5F reference 
cigarette, which is designed to deliver lower nicotine yield.111 
Also, IQOS-M yielded the same nicotine level as IQOS-R under 
HCI conditions (p=0.35).

Online supplemental table S3 summarises data on nicotine, 
formaldehyde, acetaldehyde and acrolein emissions for all tested 
products under different puffing regimes. Under HCI conditions, 
data on the common carbonyls in IQOS-R aerosols showed no 
significant difference that could be attributed to affiliation or 
funding. However, both data sources showed higher emissions 
of furanic carbonyls in IQOS aerosols compared with 3R4F ciga-
rettes, which could be attributed to the high concentration of 
sugar additives in IQOS HeatSticks (Talhout et al, unpublished 
data, 2021). Independent data highlighted the impact of puffing 
conditions on toxicant levels in IQOS aerosols when compared 
with combustible cigarettes with lower reductions in ISO condi-
tions than in HCI, although PMI affiliates reported a robust 
reduction in carbonyls under different puffing conditions.59 60 
Independent research further highlighted the influence of ciga-
rette comparator when assessing carbonyl reduction in IQOS 

Figure 4  Nicotine yield in IQOS-R (regular tobacco flavour) aerosols 
generated under Health Canada Intense (HCI) regime. The dashed box 
represents the range of 3R4F cigarette smoke (1.70–2.26 mg/cigarette) 
obtained from data presented by five independent and five Philip Morris 
International (PMI)-sponsored studies. Filled columns represent data 
from PMI-sponsored research, horizontal stripes from a competing 
manufacturer and oblique stripes from independent research. The error 
bars are the SDs reported in the corresponding articles.
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aerosol, as some carbonyls were higher in IQOS-R aerosols than 
in 1R5F or ultralight cigarette smoke.47 49 54

To assess the impact of puffing conditions on nicotine and 
carbonyl emissions, we combined and analysed data from 
independent and PMI studies.9 36 41–58 Table 3 shows that puff 
duration, number of puffs and flow rate are significantly asso-
ciated with IQOS nicotine emissions. In contrast, puff dura-
tion, flow rate and cigarette type were significantly associated 
with combustible cigarette nicotine emissions. This finding is in 
partial agreement with a recent study showing that puff volume 
and puff frequency significantly affected nicotine emissions 
from cigarettes and continuously heated HTPs like IQOS.112 In 
terms of carbonyl emissions, in general, we found no significant 
correlations between puffing parameters and carbonyl emis-
sions. IQOS flavour had a significant effect on acetaldehyde 
emissions while cigarette type affected formaldehyde emissions. 
Our group recently found a significant correlation between all 
puffing parameters and carbonyl emissions (El-Hellani et al, 
unpublished data). Data source had a significant effect on nico-
tine yield and acetaldehyde emissions from IQOS and formalde-
hyde emissions from cigarettes when different puffing conditions 
are considered.

Our statistical analysis highlighted the need to monitor IQOS 
emissions under different puffing regimes,9 46 47 54 as there are 
no standard IQOS smoking regimes and the only puffing data 
collected from users were reported by PMI.41 43 Moreover, PMI 
used the HCI regime in their studies which could lead to over-
estimated reductions, as HCI is considered an intense regime 
for cigarettes.55 Independent research should compare IQOS 
to other cigarette comparators49 and other available tobacco 
products before accepting reduced exposure or reduced risk 
claims.57 84

PMI and independent data agreed that IQOS emits nico-
tine efficiently,45 55 while reducing exposure to certain HPHCs 
compared with combustible cigarettes.9 41 However, PMI 
data showed increases in some emissions from IQOS aerosols 
compared with cigarette smoke as reported in the comprehen-
sive chemical characterisation.62 Notably, not all these emis-
sions are listed in the FDA’s HPHC list (n=93), which was 
recently criticised for its limited scope ignoring compounds 
with cardiovascular and pulmonary impact (eg, radicals and 
particles).113 Moreover, an independent report reviewed the 
IQOS MRTP application and found that data on 53 of FDA’s 
HPHC list were missing, of which 50 are carcinogens, while 
56 other constituents with limited toxicity data (not in the 
FDA list) were higher in IQOS emissions (eg, up to 13 650% 
for 2-ethyl-5-methyl-1,4-dioxane) compared with 3R4F.37 The 

authors noted that this selective reporting of data supports PMI’s 
claim of reduced exposure to HPHCs.

Independent studies reported similar reductions to TSNAs, 
VOCs, PAHs and other emissions under HCI conditions, but 
sometimes lower reductions under ISO conditions or when 
compared with cigarettes other than 3R4F (eg, pyridine was 
higher by 264% compared with 1R5F). One study reported 
400% higher glycidol in IQOS aerosols; glycidol was identi-
fied as a probable carcinogen by the International Agency for 
Research on Cancer and others suggested adding it to the FDA’s 
HPHC list to highlight the toxicity of alternative tobacco prod-
ucts.113 Another study reported emission of an IQOS-specific 
acute toxicant (formaldehyde cyanohydrin).73 This result high-
lights the need for independent analysis of the complex matrix 
of the IQOS aerosol,37 including non-targeted analysis to iden-
tify unknown constituents of toxicity potential.71 It is important 
to note that reduced exposure to some HPHCs does not neces-
sarily translate into reduced risk, as there could be different types 
of effects, varying potency (dose related) and varying severity 
of disease between different tobacco products.114–116 Also, 
reduction in some emissions may be associated with increases 
in others, which complicates any head-to-head comparison of 
tobacco products.

Independent research, in contrast to PMI data, showed that 
particle emissions in indoor spaces do not return to baseline 
values soon after IQOS use termination, indicating that IQOS 
is an indoor air pollutant.46 80 86 However, both data sources 
agreed that IQOS is a lesser indoor air pollutant compared with 
other sources of emissions like cigarettes, waterpipe, e-cigarettes, 
other HTPs, incense or mosquito coils.84 89 90 Nevertheless, both 
sources showed emission levels higher than background levels of 
some constituents (eg, PM and acetaldehyde) that could nega-
tively impact bystanders’ health in the long term, urging inde-
pendent researchers to call for restricting indoor IQOS use.93

Notably, in contrast to Accord, an HTP previously marketed 
by PMI, IQOS has been marketed as a safer alternative to ciga-
rettes with reduced risk claims,17 although IQOS increased 
users’ exposure to several emissions compared with Accord 
(eg, catechol, formaldehyde and styrene). In July 2020, the US 
FDA authorised marketing IQOS as a reduced exposure (but not 
reduced risk) product based on data reported by PMI mainly 
in an industry-dominated journal.11 29 117 Independent reports 
expressed concern about PMI’s data35 37 73 106 118 and scepticism 
about the net public health benefit of issuing this authorisa-
tion before independent evidence is available, especially given 
that such a label may impact harm perceptions in the popula-
tion.15 16 18 119 Moreover, PMI’s MRTP application relies on 

Table 3  Statistical analysis of the impact of puffing parameters and IQOS flavour on IQOS nicotine and carbonyl emissions

Tobacco product

Nicotine (mg/item) Formaldehyde (µg/item) Acetaldehyde (µg/item) Acrolein (µg/item)

IQOS
Cigarette 
(3R4F) IQOS

Cigarette 
(3R4F) IQOS Cigarette (3R4F) IQOS Cigarette (3R4F)

Puff duration (s) 0.35±0.07*** 0.35±0.13* 3.00±1.85 3.86±16.70 −2.59±7.15 164.60±555.60 1.48±0.77 39.48±18.56

Number of puffs (/
session)

0.06±0.02** −0.01±0.02 0.35±0.51 −0.58 ±2.64 2.09±1.95 −9.51±87.90 0.44±0.22 0.00±2.90

Flow rate (L/min) 0.68±0.16*** 2.10±0.20*** 3.55±4.25 48.40±26.46 37.60±16.39* 1507.31±879.90 3.40±1.77 133.20±29.42**

IQOS flavour/cigarette 
type (categorical)

*** ** *

Affiliation (categorical) * * ***

Data on combustible cigarettes were analysed for comparison.
B (unstandardised regression coefficient)±SE, statistical significance at: *p<0.05; **p<0.01; ***p<0.001.

 on F
ebruary 8, 2024 by guest. P

rotected by copyright.
http://tobaccocontrol.bm

j.com
/

T
ob C

ontrol: first published as 10.1136/tobaccocontrol-2021-056986 on 13 M
ay 2022. D

ow
nloaded from

 

http://tobaccocontrol.bmj.com/


100 El-Kaassamani M, et al. Tob Control 2024;33:93–102. doi:10.1136/tobaccocontrol-2021-056986

Review

smokers switching completely from cigarettes to IQOS (to be 
discussed in a follow-up report).106 120–125 .16 18

A good public health approach should not rely only on data 
from the manufacturer to decide whether a new tobacco product 
has reduced risk potential.14 One possible solution is to recruit a 
third party to replicate the data and ensure that harm reduction 
claims are valid.21 113 Analysing data from both the manufacturer 
and independent researchers likely results in a more comprehen-
sive and objective assessment of novel tobacco products. Proce-
dural changes are needed to diminish the privileged position of 
the tobacco industry in regulation such as the current MRTP 
application mechanism in the USA.126 Also, special care should 
be given to the language of risk communication related to any 
novel tobacco product.127 128 To shorten the time between the 
introduction of a novel tobacco product into the market and 
building evidence-based regulation, a proactive approach might 
be to require a premarket notice of 1 or 2 years.129 During 
this period, prototypes are made available for independent 
researchers to analyse emissions, toxicity and short-term health 
impact.

CONCLUSION
This review assessed the distribution of reported data on IQOS 
between PMI-affiliated or supported researchers and indepen-
dent researchers. Comparable contributions on chemical anal-
ysis, toxicity assessment and health effects were highlighted; 
however, independent research dominated studies on IQOS 
use, marketing and regulation. Our analysis showed agreement 
between data sources on nicotine yield and reductions in some 
IQOS emissions compared with combustible cigarettes, while 
independent studies and examination of PMI’s data showed 
increases in other emissions from and beyond the FDA’s HPHC 
list.
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