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Abstract

Background

Electronic nicotine delivery systems (ENDS; e-cigarettes), consisting of a battery, heating

element and e-liquid, have evolved significantly with wide variation in design, components,

operating powers, and chemical constituents. Generated aerosols have been reported to

contain potentially toxic substances. We conducted a systematic review to assess what is

known about the presence of toxicants in ENDS aerosols in order to inform how system

design could mitigate risk.

Methods

Articles reporting on or evaluating design characteristics of ENDS and aerosol constituents

were included and summarized.

Results

The search identified 2,305 articles, of which 92 were included after full-text review. Findings

were grouped into 6 major categories of potentially harmful chemicals: carbonyls, volatile

organic chemicals, trace elements, reactive oxygen species and free radicals, polycyclic

aromatic hydrocarbons, and tobacco-specific nitrosamines. In general, higher concentra-

tions of aerosol toxicants are associated with increased power or voltage. Aerosol toxicants

are also associated with e-liquid flavoring agents existing as primary ingredients or as prod-

ucts of thermal degradation.

Conclusions

Improved ENDS design can reduce toxicant levels. Additional research is needed to

develop a framework for optimizing system characteristics to minimize exposure, especially

with respect to heating power and e-liquids. Both manufacturers and regulatory agencies

have roles in reducing toxicants and potential health risks from ENDS.
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Introduction

Electronic nicotine delivery systems (ENDS) consist of a battery, a heating element (usually

consisting of a coil and wick), and liquid (“e-liquid”). The heated coil aerosolizes the e-liquid

which consists of propylene glycol (PG), vegetable glycerin (VG), nicotine, and flavoring

agents. ENDS were introduced commercially in China in 2003 and to the United States and

Europe between 2006 and 2007 [1]. The ENDS market was a $19.3 billion global industry in

2018 [2] which is expected to increase to $58 billion by 2026 [3]. ENDS have been proposed as

a smoking cessation strategy [4], or for smoking reduction [5], but concerns also exist that

ENDS may serve as a “gateway” to conventional tobacco products among adolescents [6].

The aerosols produced by ENDS have been reported to contain potentially toxic substances,

which the user inhales [7]. Previous literature reviews evaluated aerosol carbonyls [8], trace

metals [9], and methodological approaches to analysis [10]. A broader review [11] evaluated

carbonyls, volatile organic compounds (VOCs), metals, polycyclic aromatic hydrocarbons

(PAHs), and tobacco-specific nitrosamines (TSNAs) in aerosols, as well as flavors and solvents

in refill solutions, and cartridges. No reviews have summarized the literature relating to the

impact of ENDS design on all identified aerosol toxicants. Potential toxicants originate from e-

liquid components, degradation of ENDS materials, and reactions between the device and e-

liquid delivering chemicals such as VOCs, trace elements [12], and carbonyls such as formal-

dehyde, acrolein [13], and acetaldehyde [14]. Investigators have suggested that differences in

the engineering process, individual modifications [15], and design features affect aerosol com-

position [16].

We conducted a systematic review of the literature in order to collate and integrate the liter-

ature assessing the design characteristics of ENDS associated with the production or release of

potentially harmful substances in inhaled aerosols. We approached our review from the per-

spective of advancing understanding of how ENDS design could inform scientific and policy

discussion around how to modify potential risks associated with their use.

Methods

A registered protocol does not exist for this systematic review. A PRISMA checklist is available

in supporting information (S1 Checklist).

Inclusion criteria

The review included articles reporting on (i.e., listing ENDS characteristics) or evaluating (i.e.,

assessing how design differences impact output) ENDS design characteristics and aerosol con-

stituents, with a specific focus on the measurement of chemical species in aerosols produced

by heated-coil ENDS.

Exclusion criteria

We excluded articles first by duplicates (n = 287), then a title and abstract screening, and

finally by a full-text screening. Irrelevant studies included (n = 1,835), but were not limited to,

articles not assessing ENDS aerosol, letters, commentaries, or other reviews, second-hand or

third-hand aerosol/residue assessments from ENDS, and environmental exposure studies.

Additionally, studies retrieved that were not available in English or were published anony-

mously were also eliminated at this stage. At the full-text screening, studies were eliminated

upon the basis of 4 criteria: wrong study design (n = 32; e.g., indirect measures of toxicity or

cytotoxicity studies, exhaled breath or saliva studies, or only analyzed e-liquid), no primary

data (n = 28; e.g., perspective, comments, or responses to previous literature), no full text
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(n = 17), and assessed major aerosol constituents only (n = 14; studies exclusively analyzing the

known major and expected aerosol constituents nicotine, PG, and VG) were also excluded as

these are expected aerosol constituents when liquids containing them are aerosolized.

We defined risk of bias a priori as the utilization of analytical techniques employed by

research groups externally (Group A), internally (Group B), or non-replicated (Group C) for a

specific major chemical category. Because we did not quantitatively combine study results, no

articles were excluded based on risk of bias.

Search strategy

We searched Ovid MEDLINE, Epub Ahead of Print, In-Process & Other Non-Indexed Cita-

tions, Daily and Versions electronic databases, selecting articles published from 1946 until

May 07, 2020. We employed the following keywords: "electronic nicotine device," “vape,” “vap-

ing,” "electronic nicotine delivery system," "electronic cigarette," "e-cigarette," “ecig,” and "e-

cigs." These terms were combined with the following terms: “acetaldehyde,” “acrolein,” “aero-

sol,” “air pollutant,” “aldehyde,” "aromatic amine," “atomizer,” “carbonyl,” “coil wire,” “e-liq-

uid,” “exp flavoring agents,” “exp metals, heavy,” “exp temperature,” “formaldehyde,” "free

radical," “glycerol,” "heavy metal," “nitrosamine,” “phenol,” "polycyclic aromatic hydrocar-

bon," “propylene glycol,” “thermal degradation,” “toxic,” “toxicity,” “vocs,” “volatile,” and "vol-

atile organic compounds".

Results

Our search strategy identified 2,305 articles, and full-text review resulted in inclusion of 92

studies (Fig 1). We grouped studies into 6 major chemical groups. Five were included on the

basis of their designation as “harmful and potentially harmful constituents” in tobacco prod-

ucts by the US Food & Drug Administration (FDA) [17]: carbonyls, VOCs, trace elements,

PAHs, and TSNAs. In addition, we added free radicals and reactive oxygen species (ROS)

because of their potential to cause tissue injury and disrupt physiological function [18]. If a

particular chemical did not fit into one of these categories, it was categorized as “other” and

not included in the presented tables.

Because there is overlap in the physical properties of categories, chemicals were sorted on

the basis of general consensus in the literature as well as physical characteristics. The carbonyl

category consisted of chemicals containing a carbonyl moiety; examples include formaldehyde

and acetaldehyde. VOCs were defined as organic compounds with a boiling point between 50

and 250 ˚C [19], such as benzene and styrene. Elemental analysis was required for inclusion in

the trace elements category; common examples include copper (Cu), lead (Pb), and zinc (Zn).

ROS and free radicals included studies analyzing ROS, free radicals, or flux in ROS. PAHs

included compounds exclusively containing carbon and hydrogen atoms and at least 2 ben-

zene rings bonded in particular arrangements such as clustered, angular, and linear [20]. Com-

mon examples seen in the ENDS literature are benzo[a]pyrene and chrysene. TSNAs are N-

nitroso derivatives of pyridine alkaloids such as nicotine and nornicotine that are naturally

occurring in tobacco and increase throughout the curing process [21]; N’-nitrosonornicotine

(NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are notable examples.

Articles were not combined quantitatively due to heterogeneity in collection methods, analyti-

cal methods, device parameters, and reported units.

Our search identified publications reporting ENDS characteristics and major toxicant

chemical groups in aerosols (Table 1; S1 Table). We identified carbonyl compounds as the

most commonly analyzed toxicants and further characterized articles by the specific carbonyl

chemical analyzed (Table 2). The majority of these studies reported power, device type (i.e.,
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manufacturer or other device identifying characteristics regarding atomizers, cartomizers, or

clearomizers), and e-liquid flavor (i.e., commercially available or laboratory-prepared) and

evaluated aerosol constituents of formaldehyde, acetaldehyde, and acrolein.

Associations between ENDS characteristics and aerosol toxicants

We further categorized articles based on their reporting of ENDS attributes and how differ-

ences in devices and operating conditions influence the presence of aerosol toxicants

(Table 3); the absence of a correlation did not prevent a particular study from being included

Fig 1. Methodological approach for systematic review and article selection.

https://doi.org/10.1371/journal.pone.0234189.g001
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in Table 3. Below, the studies are grouped by the toxicants examined, and their main findings

are summarized.

Carbonyls/VOCs

Numerous studies have evaluated the relationship between power supplied to the atomizer

heating element and aerosol carbonyl concentrations. Salamanca et al. [31] reported carbonyl

levels of 1.20 μg/mg e-liquid consumed when an ENDS was operated at a power of 10 watts

(W) and 4.43 μg/mg e-liquid with the power at 15 W. Beauval et al. [22] observed that carbonyl

concentrations in aerosol were higher when the ENDS was operated at 30 W than at 18 W.

Korzun et al. [27] marked propionaldehyde, acetaldehyde, acrolein, glycoaldehyde, hydroxya-

cetone below the limits of detection and quantification at 11, 13, and 17 W, but all carbonyls

were above the limit of quantification at 24 W. El-Hellani et al. [40] concluded that power sig-

nificantly correlated with total aldehydes in ENDS aerosol. In a particular ENDS recom-

mended for use at 15–60 W, Uchiyama et al. [48] detected carbonyls at high levels at 50 W

(4400 μg/15 puffs) and even higher at 60 W (6200 μg/15 puffs). Jensen et al. [44] identified car-

bonyls and VOCs in ENDS aerosol in single-puff experiments and observed increases in the

measured compounds when power increased from 4 W to 6 W; the aerosol produced had a

unique fingerprint that distinguished it from the unaerosolized e-liquid. Ogunwale et al. [29]

observed that increasing ENDS power from 11.7 W to 16.6 W dramatically increased the aero-

sol concentrations of acetaldehyde, acrolein, formaldehyde, propionaldehyde, and butyralde-

hyde. Geiss et al. [25] observed that carbonyl production significantly increased with

increasing power, with a sharp rise at 15 W and 20 W. Talih et al. [32] concluded that carbonyl

concentrations in ENDS aerosols are correlated with both power applied per surface area of

coil and liquid consumed. Vreeke et al. [35] observed that acrolein and acetaldehyde remained

below the limit of detection when power increased from 55 W to 65 W on a sub-ohm (<1

ohm resistance) heating coil, but these toxicants increased when power increased from 9 W to

11 W on a supra-ohm (>1 ohm resistance) heating coil. Vreeke et al. [34] found that device

temperature increases with increasing power and corresponds directly to dihydroxyacetone

(DHA) production. Pankow et al. [50] observed that benzene concentrations in aerosol

increased with increasing wattage from 6 W to 13 W on one device, but remained undetectable

Table 1. Number of studies reporting ENDSa characteristics and measured major chemical groups in aerosol.

Characteristic Carbonyls VOCs Trace Elements ROS and Free

Radicals

PAHs TSNAs

Power (W) 28 [22–49] 7 [39, 44, 47–51] 5 [49, 51–54] 4 [55–58] 2 [49, 59] 1 [49]

Voltage (V) 23 [23–26, 28–30, 33, 36, 38, 42, 43,

60–70]

5 [51, 64, 66, 69, 71] 7 [51–53, 60, 69, 71, 72] 1 [73] 2 [60, 69] 1 [69]

Resistance (Ω) 34 [22, 23, 25–29, 31–36, 38, 39, 41–

48, 60, 62, 64, 65, 67, 69, 70, 74–77]

10 [39, 44, 47, 48, 50, 51, 64,

69, 76, 77]

5 [51–53, 60, 69] 4 [56–58, 73] 3 [60, 69, 76] 2 [69, 76]

Temperature

(˚C)

1 [41] 2 [56, 58]

Coil Material 6 [22, 25, 27, 45, 48, 69] 3 [48, 51, 69] 5 [51, 52, 54, 69, 78] 3 [56–58] 1 [69] 1 [69]

Device 45 [14, 22–32, 34–47, 49, 60, 62, 64,

65, 67–70, 74–77, 79–84]

12 [39, 44, 47, 49–51, 69, 76,

77, 79, 83, 85]

13 [49, 51–54, 60, 69,

72, 79, 83, 86–88]

10 [14, 55–58, 73,

84, 88–90]

7 [49, 59, 60,

69, 76, 83, 85]

6 [49, 69, 76,

79, 83, 91]

E-Liquid 52 [14, 22–49, 60, 62, 64–70, 74–77,

79, 80, 83, 84, 92–97]

19 [39, 44, 47–51, 64, 66, 69,

71, 76, 77, 79, 83, 85, 93–95]

14 [49, 51–54, 60, 69,

71, 79, 83, 86–88, 98]

10 [14, 55–58, 73,

84, 88–90]

7 [49, 59, 60,

69, 76, 83, 85]

6 [49, 69, 76,

79, 83, 91]

a Abbreviations: ENDS, electronic nicotine delivery device; VOC, volatile organic compound; ROS, reactive oxygen species; PAH, polycyclic aromatic hydrocarbon;

TSNA, tobacco-specific nitrosamines

https://doi.org/10.1371/journal.pone.0234189.t001
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when wattage increased from 6 W to 20 W on a different device. Gillman et al. [26] observed

that an increase in the efficiency of aerosol production, defined as (milligrams aerosol per

puff) per watt of power applied to the coil, was associated with lower levels of aldehydes in the

aerosol. Farsalinos et al. [24] observed that aerosol formaldehyde concentrations increased

with increasing power applied to the heating coil, but also concluded that daily exposure to

formaldehyde from consuming 3 grams of liquid would be 32% lower than from smoking ciga-

rettes. Overall, the findings suggest that increased power is associated with increased carbonyl

production.

The available literature suggests a similar relationship between voltage and the amount of

carbonyls in ENDS aerosol. Uchiyama et al. [33] observed that carbonyls increased when

applied voltage increased from 3.2 V to 4.4 V. Kośmider et al. [62] observed that PG-contain-

ing fluids were associated with significantly higher levels of formaldehyde and acetone when

an ENDS was operated at 4.8 V than at 3.2 V. Sleiman et al. [64] observed that increasing the

voltage applied to a single-coil device from 3.3 V to 4.8 V tripled total aldehyde emission rates

from 53 to 165 μg/puff, and reusing the device several times increased aldehydes by more than

60%. Behar et al. [43] observed hydroxyacetone in ENDS aerosols at concentrations ranging

from ~100 to ~10,000 μg/mL at 5 V but not at 3 V. Zhao et al. [71] observed that as voltage

increased from 2.2 to 5.7 V, benzene increased 11-fold and toluene doubled. Similarly to

increasing power, an increase in voltage has been observed to be associated with increased car-

bonyls in aerosol at a fixed resistance.

Suboptimal ENDS operating conditions result in what is commonly referred to as a “dry

puff”, during which coil heating occurs in the absence of sufficient e-liquid to produce aerosol.

Suboptimal ENDS operation can result in higher concentrations of carbonyls in aerosol. Farsa-

linos et al. [37] observed aldehydes under non–dry puff conditions but at substantially lower

levels than with conventional cigarettes; however, dry puff conditions raised ENDS aerosol

concentrations of formaldehyde, acetaldehyde, and acrolein by 30 to 250 times, potentially

Table 3. Number of studies reporting associations between varying ENDSa characteristics and aerosol toxicants.

Characteristic Carbonyls VOCs Trace

Elements

ROS and

Free

Radicals

PAHs TSNAs

Power (W) 21 [22–27, 29, 31–38, 40, 43–

45, 47, 48]

4 [44, 47, 48,

50]

1 [52] 3 [55–57]

Voltage (V) 11 [23–26, 29, 33, 38, 43, 62,

64, 70]

2 [64, 71]

Resistance (Ω) 14 [22, 26, 29, 32–36, 38, 44,

45, 47, 48, 64]

5 [44, 47, 48,

50, 64]

1 [52]

Temperature

(˚C)

1 [56]

Coil Material 2 [22, 48] 1 [48] 1 [52]

Device 19 [14, 22, 23, 26, 29, 32, 34–

38, 40, 44, 45, 47, 64, 79, 80,

83]

6 [44, 47, 50,

64, 79, 83]

6 [52, 54, 72,

79, 83, 87]

4 [14, 55, 89,

90]

1 [83] 2 [79,

83]

E-Liquid 31 [14, 23, 25, 28, 29, 33, 35,

36, 38–40, 42, 43, 46, 47, 60,

62, 64, 67, 68, 70, 74, 75, 79,

80, 83, 84, 92–94, 97]

11 [39, 47, 50,

51, 64, 71, 79,

83, 85, 93, 94]

8 [52, 54, 60,

79, 83, 86, 87,

98]

9 [14, 55–

58, 73, 84,

89, 90]

4 [59,

60, 83,

85]

3 [79,

83, 91]

a Abbreviations: ENDS, electronic nicotine delivery device; VOC, volatile organic compound; ROS, reactive oxygen

species; PAH, polycyclic aromatic hydrocarbon; TSNA, tobacco-specific nitrosamines

https://doi.org/10.1371/journal.pone.0234189.t003
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higher levels than a conventional cigarette. Available evidence seems to suggest that mainte-

nance of optimal operation conditions (e.g., adequate wick saturation and avoiding excessive

coil heating) is associated with lower levels of carbonyls.

Coil location, orientation, and resistance may also affect carbonyl production. Farsalinos

et al. [23] observed that top-coil atomizers produce more carbonyls at higher voltages than at

lower voltages, and bottom-coil atomizers produce extremely low levels of carbonyls at both

high and low voltages. Gillman et al. [26] also observed that top-coil atomizers produce more

carbonyls than bottom-coil atomizers at the same wattage. Pankow et al. [50] reported that

benzene concentrations were largely undetectable in an ENDS with a single vertical coil with a

cotton wick, but were more readily detected with a single horizontal coil with a silica wick.

Vreeke et al. [34] observed that aerosol concentrations of DHA were directly proportional to

the mass of aerosolized VG:PG, but a vertical coil produced less DHA than a horizontal coil.

Stephens et al. [45] similarly observed more carbonyls with a top coil than a bottom coil; insuf-

ficient wick saturation was associated with coil build-up and greater carbonyl output com-

pared to a stainless steel organic cotton coil which provided ample wick saturation with

minimal coil deposits and fewer carbonyls. Son et al. [47] identified a top coil device generated

increased concentrations of formaldehyde (4.80 μg/puff) compared to a mod device with a

Clapton-style coil (0.47 μg/puff) Top-coil horizontal atomizers have the potential to generate

more carbonyls compared to bottom-coil horizontal atomizers, while vertical coils produced

fewer carbonyls than horizontal coils.

Several studies, but not all, have observed that carbonyl and VOC production varies by

device type. Uchiyama et al. [33] reported significant differences in carbonyl production

between different brands, whereas Flora et al. [83] observed low formaldehyde concentrations

with low variability (0.09 to 0.33 μg/puff) across 4 of the same ENDS products. Gillman et al.
[46] examined the formaldehyde, acetaldehyde, and acrolein output of 10 identical ENDS

products noting the inherent variability observed from the devices. Goniewicz et al. [79]

observed 4 carbonyls (among 15 analyzed) and 2 VOCs (among 11 analyzed) that were present

in aerosols generated from almost all 12 ENDS brands. Bitzer et al. [14] observed some signifi-

cant differences between several non-refillable closed-system devices and 4 carbonyls. Wagner

et al. [85] did not detect 1,3 butadiene; isoprene; acrylonitrile; benzene; or toluene in the aero-

sol of 6 top-selling, commercially available ENDS. Laugesen et al. [80] observed across 9 ENDS

brands an average formaldehyde concentration of 1.07 μg/L of vapor, 0.81 μg/L of acetalde-

hyde, and 1.06 μg/L of acrolein; however, the concentrations of aldehydes on average have

decreased over time. El-Hellani et al. [40] concluded that ENDS brand significantly correlated

with total aldehydes in ENDS aerosol. Vreeke et al. [35] reported fewer carbonyl compounds

produced from a sub-ohm tank than from a supra-ohm clearomizer (atomizer and cartridge).

Gillman et al. [26] reported that sub-ohm devices produced lower levels of carbonyls than

supra-ohm devices at similar wattages. Device type has been shown to potentially impact car-

bonyl and VOC output.

Numerous articles have reported that e-liquid constituents impact carbonyl aerosol concen-

trations. Kim et al. [51] observed that carbonyls were present in aerosol associated with major

flavoring groups but not in un-aerosolized liquid. Herrington et al. [94] observed that acetalde-

hyde and acrolein exist in ENDS aerosol but not in e-liquid solutions. Conklin et al. [42] dem-

onstrated that VG generates higher levels of formaldehyde and acrolein and PG generates

higher levels of acetaldehyde. Klager et al. [97] observed median formaldehyde concentrations

of 626 μg/m3 in aerosol produced with 24 e-liquid flavors. Beauval et al. [60] observed formal-

dehyde and acetaldehyde close to 1 ng/mL of emission with no substantial differences between

flavorings, with the exception of acrolein concentrations from aerosol produced with “blond

tobacco” flavored e-liquid. Papoušek et al. [93] observed that acrolein was present in higher
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concentrations in tobacco-flavored than in fruit-flavored e-liquid. Zhao et al. [71] observed

that menthol flavor generated 330% more benzene and 120% more toluene than in tobacco fla-

vor. Qu et al. [74] observed that the carbonyl compounds emission factors increased linearly

1.0- to 92-fold when flavor content of the e-liquid increased from 5% to 50% and concluded

that most carbonyls in e-liquids were from flavorings. Allen et al. [92] detected diacetyl in

aerosols in 39 of 51 e-liquids. Kośmider et al. [67] detected benzaldehyde in 108 of 145 flavored

e-liquids and observed the highest levels (5.1–141.2 μg/30 puffs) in cherry-flavored products.

Pankow et al. [50] observed that benzene concentrations in ENDS aerosol increased with the

addition of benzoic acid and benzaldehyde to the e-liquid solution. Vreeke et al. [35] observed

that e-liquid containing 10% flavoring compound was associated with increased carbonyls in

aerosol compared with e-liquids containing only VG:PG. Duell et al. [39] observed that the

concentrations of aldehydes (propionaldehyde, acetaldehyde, glycolaldehyde, and acrolein)

increased as sucralose concentration in the e-liquid increased. The relative concentrations of

carbonyls in the aerosol have varied from study to study [36, 38]. Reilly et al. [84] observed no

differences in formaldehyde and acetone across the aerosols of 4 different JUUL flavors. Addi-

tionally, Mallock et al. [75] observed that European and American versions of JUUL pods pro-

duced similar levels of carbonyls. Available evidence suggests that the chemical constituency of

aerosol is dependent upon the matrix of the e-liquid as carbonyl compounds are present in the

aerosol as both flavoring agents (i.e., diacetyl) and products of thermal degradation (i.e.,

aldehydes).

E-liquid composition also impacts the transfer of chemicals to the aerosol. Erythropel et al.
[68] observed that benzaldehyde carryover (i.e., percentage of chemical transferred from e-liq-

uid to aerosol) significantly increased when PG content increased from 0% PG to 100% PG.

This suggests that the concentration of toxicants in aerosol can be influenced by the bulk e-liq-

uid solution.

A common technique for carbonyl analysis is to bubble aerosol through 2,4-dinitrophenyl-

hydrazine (DNPH). This allows carbonyls to form carbonyl-DNPH adducts that can be

detected with high performance liquid chromatography. Hemiacetals are formed through the

reaction of a carbonyl with a hydroxyl, such as one on PG or VG, and become unreactive to

DNPH. The stability of hemiacetal adducts formed when reactive carbonyls, such as formalde-

hyde, interact with VG or PG is controversial, as are the implications of the results. Though

not directly observed, some investigators suggest that the stability of the carbonyl-DNPH

adduct drives equilibria of hemiacetals, acetals, and free carbonyls towards that of the car-

bonyl-DNPH adduct and the formation of hemiacetals is reversed in DNPH solution [26]; oth-

ers maintain that the formation of hemiacetals leads to a severe underestimation of the

absolute amount of carbonyls [31, 99]. Since an ENDS user would inhale the hemiacetal or ace-

tal [68], both are excluded as carbonyls in the tables.

Various ENDS operating parameters increase the concentrations of hemiacetals in aerosol.

Jensen et al. [99] reported a significant change in the presence of formaldehyde hemiacetals as

voltage increased from 3.3 V (not detected) to 5.0 V (380 ± 90 μg/10 puffs). Salamanca et al.
[31] observed approximately 4 times the amount of formaldehyde and formaldehyde hemiace-

tals when a device was powered at 15 W than at 10 W. However, both power settings had the

same ratio of formaldehyde to formaldehyde hemiacetals. Vreeke et al. [35] increased power

from 55 W to 65 W for a newer generation device and identified increased formaldehyde

hemiacetals. Similarly, power increases from 9 W to 11 W significantly increased formalde-

hyde hemiacetals. Additionally, Vreeke et al. [35] reported that the addition of triacetin, a

common flavor additive, increased levels of formaldehyde hemiacetals. Duell et al. [39]

observed that formaldehyde hemiacetals increased with increasing concentrations of sucralose

added to the e-liquid. Erythropel et al. [68] reported carryover rates for both aldehydes and
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corresponding acetals to be 50–80% of the original concentration in e-liquid. Power and volt-

age have been demonstrated to increase formaldehyde hemiacetals in aerosol which can be fur-

ther influenced by e-liquid composition.

Trace elements

Important relationships have been observed between trace elements in ENDS aerosols and var-

iations in power, device, air-flow, coil material, and e-liquid. Zhao et al. [52] observed that

when power was increased on an open-system device from 20 W to 40 W, median arsenic

(As), chromium (Cr), Cu, iron (Fe), manganese (Mn), nickel (Ni), Pb, antimony (Sb), tin (Sn),

and Zn concentrations increased 14, 54, 17, 30, 41, 96, 14, 81, 631, and 7-fold, respectively.

Zhao et al. [52] observed that open-system ENDS with kanthal (Fe, Cr, and aluminum [Al]

alloy) and stainless steel coils had consistently higher Fe and Ni levels. Goniewicz et al. [79]

identified Cd, Ni, and Pb in all vapors generated from 12 different first-generation ENDS

models. Prokopowicz et al. [72] detected Pb in the aerosol of 2-tank-system ENDS. Ting et al.
[54] identified 5% of ENDS and e-liquid combinations tested emitted Cr at levels that exceeded

permissible daily exposure limits. Williams et al. [87] analyzed disposable ENDS and observed

that aerosols generated at low and high air-flow rates produced the same pattern of elements,

although the total element concentration decreased at the higher air-flow rate. In this study, at

least 35 trace elements were identified in ENDS aerosol; Si was the dominant element, but

other elements such as calcium (Ca), sodium (Na), Cu, magnesium (Mg), Sn, Pb, Zn, boron

(B), selenium (Se), Al, Fe, germanium (Ge), Sb, Ni, and strontium (Sr) were present in most

ENDS aerosols, with relative concentrations varying by ENDS model. Beauval et al. [60] evalu-

ated 6 e-liquid refills and observed that only Cd, Cr, and Sb were present in aerosol, with con-

centrations up to 0.14, 3.4, and 0.47 pg/mL puff, respectively. The concentrations of metals

varied minimally with the presence or absence of flavoring and nicotine. In contrast, Mikheev

et al. [86] observed that that As, Cr, Ni, Cu, Sb, Sn, and Zn levels in ENDS aerosol varied

widely across nicotine- and non-nicotine-containing flavors. Liu et al. [98] observed certain

As species significantly increased in concentration from e-liquids to aerosol. Not all published

articles have detected trace elements. Flora et al. [83] did not detect As and cadmium (Cd) in

ENDS aerosol across 4 commercial e-cigarette non-refillable closed-system products. The ten

most examined elements in descending order were Cu, Ni, Zn, Pb, Cd, As, Fe, Cr, Sn, and Al.

ROS and free radicals

The concentration of free radicals in aerosol has been reported to vary by power and associated

coil temperature. Bitzer et al. [56] observed increases in free radicals with increases in coil tem-

perature from 100 to 300 ˚C and power from 10 W to 50 W. Haddad et al. [55] observed that

ROS flux increased 3-fold when the power increased from 5 W to 11 W on a single coil device,

and increased approximately 7-fold when the power increased from 100 W to 200 W on an

octuple coil device. Son et al. [57] observed that a device formed more hydroxyl radicals at

31.3 W than at 6.4 W. Free radicals have been demonstrated to increase with an increase in

power.

The effects of device type on free radicals have been examined. Bitzer et al. [14] observed

that free radicals are produced by non-refillable closed-system ENDS. Shein et al. [89]

observed similar amounts of free radicals in aerosols using standard wicking and heating, a

mesh coil, and an air control. Hasan et al. [90] found free radical concentration from two

closed-system ENDS were significantly lower than conventional tobacco cigarettes, but the

oxidative potency from the free radicals originating from the ENDS was much higher. No

clear relationship between free radicals and device design has been observed.
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The composition of e-liquid affects the concentrations of free radicals in aerosol. Bitzer

et al. [56] observed increases in free radicals with changing VG:PG ratios from 100:0 to 0:100.

Son et al. [57] observed that VG- and VG:PG-based e-liquids formed twice as many radicals

than exclusively PG-based e-liquids; specifically, 90- and 170-mL puffs (3.8 s each) generated

4.1- and 10.3-fold more hydroxyl radicals than a 35-mL puff (also 3.8 s). Reilly et al. [84] ana-

lyzed aerosol from JUUL and observed that free radicals were 2.95 ± 0.81 nmol/g for tobacco

flavor at a 70:30 VG:PG ratio; the concentration was higher (3.01 ± 0.28 nmol/g) when the e-

liquid composition was 70:30 VG:PG without flavoring. Additionally significance was reached

when the e-liquid was 40:60 VG:PG without flavoring (4.68 ± 0.58 nmol/g), and increased fur-

ther to 4.78 ± 0.73 nmol/g when citral was added to the 40:60 VG:PG base. Goel et al. [73] gen-

erated aerosols from 3 different e-liquids generated by a tank system and estimated free-

radical production to be 10.3, 4.0 and 2.5 × 1013 radicals per puff of menthol, citrus, and

tobacco flavors, respectively. Bitzer et al. [58] analyzed the free radicals generated from 49

commercially available e-liquids and observed that nearly 43% of the flavors resulted in signifi-

cant increases in radical production compared with the base VG:PG (40:60) mixture, but the

amount varied greatly among the flavors; the flavorings dipentene, ethyl maltol, citral, linalool,

and piperonal promoted radical formation in a concentration-dependent manner, whereas

ethyl vanillin inhibited radical formation. Overall, ROS and free radicals in ENDS aerosol vary

by e-liquid composition, but the precise relationship has yet to be determined.

PAHs

PAH concentrations in aerosol vary with device and e-liquid but are generally low if detected.

Flora et al. [83] analyzed aerosol from 4 commercially available e-cigarette products and

observed that benzo[a]pyrene was below the limit of detection of 10 ng/device. Similarly, Wag-

ner et al. [85] did not detect benzo[a]pyrene in the aerosol of 6 top-selling commercially avail-

able ENDS. Beauval et al. [60] systematically detected naphthalene and acenaphthylene in

ENDS aerosol at low concentrations (up to 4.10 and 0.37 pg/mL puff, respectively). Eddingsaas

et al. [59] analyzed aerosols created from vanilla, cinnamon, and mango e-liquids and

observed cadalene in the mango flavor. Available evidence suggests that PAH concentrations

are low which is consistent with the knowledge that PAHs are primarily products of combus-

tion [100] and ENDS operate at lower temperatures than combusted tobacco products.

TSNAs

Studies of different ENDS products have observed low or undetectable levels of TSNAs. Flora

et al. [83] did not detect TSNAs (NNN and NNK) in aerosols from 4 commercially available

ENDS products. Goniewicz et al. [79] analyzed 12 ENDS products and observed NNN concen-

trations ranging from not detected to 4.3 ± 2.4 ng and NNK from not detected to 28.3 ± 13.2

per 150 puffs. Farsalinos et al. [91] observed that no TSNAs were above the level of detection

for aerosols generated from 3 tobacco-flavored e-liquids aerosolized by a second-generation

ENDS. Though TSNAs are carcinogenic and their concentrations eclipse many other carcino-

genic compounds in conventional cigarettes [101], they are less prevalent in ENDS.

Additional articles

Garcia-Gomez et al. [102] analyzed the aerosol of an ENDS through secondary electrospray

ionization mass spectrometry, which identified more than 250 chemical species, including

alkaloids and various flavoring compounds. The authors noted that some substances increased

with increasing power of the device. Behar et al. [103] found cinnamaldehyde in 20 (51%) of

39 refill fluids, and aerosols contained several different constituents at 5 V than at 3 V. Soussy
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et al. [104] reported that emissions of 5-hydroxymethylfurfural and furfural were correlated

with device power and sweetener concentration in the e-liquid. These observations support

the notion that power and voltage influence aerosol toxicant concentration.

Lee et al. [105] detected more carbonyls in ENDS aerosol generated from tobacco flavors

than from menthol. Kośmider et al. [28, 70] observed that aerosol carbonyls varied by puffing

protocol when different e-liquid nicotine concentrations were assessed. Uchiyama et al. [106]

observed large variations in carbonyl concentrations between and within unnamed devices.

El-Hage et al. [107] reported the transfer of pyrazines, a class of flavoring compounds, from e-

liquid to aerosol. Rawlinson et al. [108] identified the chemical profiles of aerosols generated

from 4 e-liquids contained between 30–90 compounds mostly characterized as “unknown”

exceeding the 5 ng/puff threshold which may include PAHs.

El-Hellani et al. [109] focused on how device modifications such as power, coil material,

and coil geometry may affect the emission of small gasses, notably carbon monoxide; they

reported that power and coil material significantly affect analyzed chemical species, with nickel

wire being the most reactive. Wang et al. [110] reported a device-independent study wherein

various ratios of VG and PG were aerosolized at a range of temperatures, yielding carbonyl

compounds. VG generated much higher concentrations of formaldehyde than PG; acrolein

was detected only when VG was present in the solution and the temperature was�270 ˚C. Sal-

iba et al. [111] explored the device-independent effect of the metal coil on subsequent carbonyl

production. The wires had a catalytic impact on carbonyls, producing species at 250 ˚C, as

opposed to 460 ˚C without wire. Moreover, the investigators found the material and age of the

wire had a strong correlation with carbonyl production, with new nichrome (Ni and Cr alloy)

being the least reactive and old nichrome being the most reactive. Williams et al. [112, 113]

reported a comprehensive metal analysis of ENDS aerosol the sources of the metals to be the

metal components of the heating elements such as coils, wires, or solder joints.

Belushkin et al. [114] completed a comprehensive toxicant panel of 34 ENDS and 57 e-liq-

uids. Benzene was identified in some high power mod systems, but was not as prevalent in

non-refillable closed systems. Carbonyl emissions were lower in closed systems than open sys-

tems. Particularly noted, formaldehyde increased with the depletion of e-liquid in the reser-

voir, starting at approximately 50% capacity. Trace elements, TSNAs, and PAHs were seldom

above the limit of quantification.

Risk of bias assessment

Table 4 demonstrates that the analytical techniques used to assess major chemical groups of

aerosol toxicants have been largely replicated.

Discussion

We identified 92 articles reporting ENDS characteristics and aerosol toxicants, the majority of

which used analytic techniques replicated by other researchers and many of which attempted

to define relationships between changes in ENDS characteristics and aerosol constituents.

Device characteristics relevant to the current review of ENDS are power, voltage, resistance,

temperature, coil material, device, and e-liquid. The major chemical constituents were differ-

entiated into carbonyls, VOCs, trace elements, ROS and free radicals, PAHs, and TSNAs.

The ENDS industry evolves rapidly, and contemporary scientific observations may not

maintain relevancy over time. Williams et al. [115] characterized ENDS manufactured from

2011 to 2017, noting significant variation in atomizer design over time within and between

brands and indicating the importance of acknowledging and monitoring device design

changes. Despite these rapid changes, the extant literature provides insight into ways that the
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Table 4. Risk of bias determined by analytical technique utilized by studies and number of studies of measured major chemical groups in aerosol.

Technique Carbonyls VOCsa Trace Elements ROS and Free

Radicals

PAHs TSNAs

Group A

HPLC 41 [14, 22–26, 28, 30–33, 36–38, 40, 41, 45–48,

60–65, 67, 69, 70, 74–76, 79, 80, 82–84, 97, 106,

110, 111, 114]

3 [47, 50, 69]

GC-FID 3 [39, 68, 92] 2 [39, 71]

TD-GC-MS 2 [94, 95] 4 [50, 64, 94, 95]

GC-MS 11 [29, 33, 34, 39, 41–43, 69, 81, 93, 105] 13 [39, 48, 49, 51, 59, 69,

76, 79, 83, 85, 93, 105,

114]

7 [49, 59, 69,

76, 83, 85,

114]

EPR 8 [14, 56, 58,

73, 84, 88–90]

ICP-MS 11 [49, 52–54, 60, 69,

78, 79, 83, 86, 114]

ICP-OES 4 [51, 87, 112, 113]

SF-ICP-MS 1 [71]

UPLC-MS/MS 1 [91]

UPLC-MS 1 [79]

LC-MS/MS 5 [49, 69, 76,

83, 114]

SPME GC-MS 1 [96]

Group B

NMR 5 [27, 34, 35, 39, 44] 2 [39, 44]

GC-MS/MS 1 [60]

Group C

PTR-MS 1 [66] 1 [66]

GC-FID/

TOFMS

1 [108] 1 [108] 1 [108]

HPLC-HR-MS 1 [77] 1 [77]

SESI-HR-MS 1 [102] 1 [102]

Fluorescenceb 1 [55]

Fluorescencec 1[57]

electrothermal

AA

1 [72]

AA 1 [88]

HPLC-ICP-MS 1 [98]

EDXRF 1 [105]

FT-ICR-MS 1 [42]

Total Individual Studies

60 24 20 10 9 7

aAbbreviations: VOCs, volatile organic compound; ROS, reactive oxygen species; PAH, polycyclic aromatic hydrocarbon; TSNA, tobacco-specific nitrosamines; HPLC,

high performance liquid chromatography; GC-FID, gas chromatography–coupled flame ionization detector; TD-GC-MS, thermal desorption gas chromatography mass

spectrometry (MS); GC-MS, gas chromatography MS; EPR, electronic paramagnetic resonance spectroscopy; ICP-MS, inductively coupled plasma MS; ICP-OES,

inductively coupled plasma optical emission spectrometry; SF-ICP-MS, sector field inductively coupled plasma MS; UPLC-MS/MS, ultra performance liquid

chromatography tandem MS; UPLC-MS, ultra performance liquid chromatography MS; LC-MS/MS, liquid chromatography tandem MS; SPME GC-MS, solid phase

microextraction gas chromatography MS; NMR, nuclear magnetic resonance spectroscopy; GC-MS/MS, gas chromatography tandem MS; PTR-MS, proton transfer

reaction MS; GC-FID/TOFMS, gas chromatography–coupled flame ionization detector coupled time of flight MS; HPLC-HR-MS, HPLC high resolution-MS;

SESI-HR-MS, secondary electrospray ionization HR-MS; electrothermal AA, electrothermal atomic absorption spectroscopy; AA, atomic absorbance spectrometry;

EDXRF, energy dispersive X-ray fluorescence spectroscopy; FT-ICR-MS, Fourier transform ion cyclotron resonance MS
b flurorescence SpectraMax M5 microplate
c fluorescence Synergy 4 multidetection microplate

https://doi.org/10.1371/journal.pone.0234189.t004
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technology could be improved and aerosol toxicants minimized either by the actions of ENDS

manufacturers or through regulation, thereby reducing potential adverse health impacts.

First, improving the safety profile of e-liquids would be a critical first step in manufacturing

and regulation to reduce the likelihood of adverse health consequences from ENDS use. The

risk associated with inhaling ENDS aerosol is associated with “unintentional” contaminants

(i.e., impurities), “intentional” constituents (i.e., PG, VG, and flavorings), and the conversion

of unintentional and intentional constituents into new chemical species during aerosolization.

The literature suggests that numerous new chemicals are created during aerosolization that are

not present in the native e-liquid [51, 59, 94]. Part of the complexity of aerosol and e-liquid

composition analysis arises from the addition of flavoring compounds. Flavorings are an inte-

gral aspect of the customization of ENDS. Almost all ENDS users report using a flavored e-liq-

uid; only 1% of users prefer the chemically simpler unflavored e-liquid [116]. E-liquid

manufacturers are not mandated to list all flavoring additives as a part of the ingredients list.

Moreover, many flavorings have not been tested for toxicity or potential harm caused by

chemical transformations through heated aerosolization and inhalation. A handful of chemical

agents used in the flavoring of e-liquid have been specifically investigated. Diacetyl and acetyl

propionyl, which produce buttery or creamy flavors, have received attention for associations

with bronchiolitis obliterans (i.e., “popcorn lung”) among microwave popcorn industry work-

ers [117, 118] and have been investigated in e-liquid flavoring [82, 92]. Cinnamaldehyde has

been observed to be cytotoxic [103]. Additionally, ethyl maltol and maltol have both been

observed to interact with Cu or Fe to generate hydroxypyranone complexes that can promote

the generation of radicals [58]. Although not within the scope of this review, cell toxicity and

animal studies have been and can be leveraged to determine toxicity associated with e-liquids.

Identification and characterization of toxicants both in the native e-liquid and those produced

through aerosolization should be required of manufacturers. Regulatory agencies should pro-

vide guidance on safe levels of exposure in order to facilitate industry adherence.

Second, the relationship between power, resistance, and voltage (power = voltage2/resis-
tance) affects the potential risk associated with the use of ENDS. Aerosol toxicants generally

increase with increased power and voltage applied to the metal coil for heating. Power per sur-

face area of coil may be a stronger predictor of toxicant production in aerosol than power

alone [32]. Sub-ohm coils were introduced into the market to improve aerosol production

through rapid coil heating; however, this phenomenon occurs at the expense of battery life.

Sub-ohm devices have enabled ENDS to be operated at high wattages. Manufacturer-recom-

mended operating ranges reach into the triple digits but produce less carbonyl than supra-

ohm coils at the same power setting [26]. Researchers have suggested for manufacturers to

limit power flow to coils to reduce exposure to formaldehyde, acetaldehyde, and acrolein

[114]. More research needs to be conducted to understand the impact of newer-generation

coils (e.g., mesh, Clapton, alien, staple) on toxicant production. Researchers can advance the

science through consistent reporting of power, resistance, and voltage as well as use of stan-

dardized units of measure.

Third, atomizer design, specifically as it relates to the adequate supply of e-liquid to a heat-

ing coil, is critical to avoid the observed phenomenon of higher toxicant production from coil

overheating caused by a deficiency of e-liquid for aerosolization (i.e., dry puff). This appears to

be more common among top-coil designs due to inadequate wicking and could be mitigated

with improved wicking to the top coil or the use of bottom, vertically oriented coils. In addi-

tion to coil location, wicking material has also evolved. In earlier generations of ENDS, the

wick was primarily silica-based. With newer generations, the ENDS industry has begun to

explore other wicking materials such as cotton, stainless steel, bamboo, and ceramic. Various

wicking materials will deliver e-liquid to the coil at different rates; to avoid the dry puff
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phenomenon, these rates should be taken into consideration to ensure that the coil is properly

saturated with e-liquid at all operating temperatures. The viscosity and density of the e-liquid

will also determine its mobility, capillary action, and delivery to the coil, influencing the likeli-

hood of a dry puff. Some ENDS manufacturers have included microprocessors that will deacti-

vate heating once a certain temperature threshold is reached (e.g. >350 ˚C), which may

minimize toxicant production from a dry puff without compromising user experience by sup-

pressing aerosol production.

Fourth, atomizer heating elements are an identified source of aerosol metals, and metals

used for construction of coils and other components (i.e., clamps, wicks, and soldering) should

be selected to minimize metal breakdown and leaching. Commonly identified metals were Cu,

Pb, Ni, Sn, and Zn. Coils are traditionally Ni, Ti, kanthal (Fe, Cr, and Al), stainless steel, and

nichrome (Ni and Cr), whereas solder joints are Sn or Pb and wires are Cu [87]. The resistance

of the alloys kanthal and nichrome remain relatively constant with changing temperature,

making them ideal for use in wattage-control mode (i.e., fixed power supply with variable coil

temperature); stainless steel and titanium are better suited for temperature-controlled devices

(fixed coil temperature and variable power supply). High-quality metals with few defects

might be less likely to leach under repeated heating-cooling cycles; coupled with timely

replacement of coils, this could lead to reduced metal concentrations in aerosol. The literature

suggests that the age of the coil influences carbonyl production [111], with higher carbonyl

emissions associated with older devices or components [64]. To minimize potential toxicant

exposure, ENDS manufacturers should select high-quality metals, minimize soldering parts,

and recommended timing of coil replacement as a function of coil use.

Our review has several limitations. First, due to the variability in reporting we were unable

to quantitatively estimate and provide confidence intervals around the relationships between

device operative parameters (e.g., temperature, wattage) and resulting toxicant levels in the

aerosol. Second, we did not specifically assess the influence of human puffing topography vari-

ability on toxicity. The ability to quantitate “estimates of effect” would become increasingly

possible if the market were to contract, products were regulated, devices were standardized for

clinical therapeutic interventions, and researchers were to rigorously report operating parame-

ters to allow comparison across studies.

Conclusion

Toxicants with potential risk to health exist in aerosol produced by ENDS. Available literature

suggests that ENDS can be designed to minimize exposure to potentially harmful aerosol toxi-

cants. Minimizing toxicants in aerosol through consideration and optimization of design

could serve to reduce health risks associated with the use of ENDS as part of a comprehensive

approach to reducing tobacco harm on the population level.
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